A reach-integrated hydraulic modelling approach for large-scale and real-time inundation mapping (2025)

Afshari,S., Tavakoly,A.A., Rajib,M.A., Zheng,X., Follum,M.L., Omranian,E., and Fekete,B.M.: Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model, J. Hydrol., 556, 539–556, 2018. a, b, c

Apel, H., Vorogushyn, S., and Merz, B.: Brief communication: Impact forecasting could substantially improve the emergency management of deadly floods: case study July2021 floods in Germany, Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, 2022. a

Aristizabal,F., Salas,F., Petrochenkov,G., Grout,T., Avant,B., Bates,B., Spies,R., Chadwick,N., Wills,Z., and Judge,J.: Extending height above nearest drainage to model multiple fluvial sources in flood inundation mapping applications for the U.S.national water model, Water Resour. Res., 59, e2022WR032039, https://doi.org/10.1029/2022WR032039, 2023. a, b, c, d

Bates,P.D.: Flood inundation prediction, Annu. Rev. Fluid Mech., 54, 287–315, https://doi.org/10.1146/annurev-fluid-030121-113138, 2022. a

Bhupsingh,T., Graham,A., Peterson,D., Mennill,S., Brennan,J., and Collins,H.: Adapting to rising flood risk – an analysis of insurance solutions for Canada, https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/dptng-rsng-fld-rsk-2022/index-en.aspx#s0.4 (last access: 25March2025), 2022. a, b

Brunner,G.: HEC-RAS, River Analysis System Hydraulic Reference Manual, Tech.rep., USArmy Corps of Engineers, https://www.hec.usace.army.mil/confluence/rasdocs/ras1dtechref/latest (last access: 25March2025), 2020. a, b, c, d, e

Chaudhuri, C., Gray, A., and Robertson, C.: InundatEd-v1.0: a height above nearest drainage (HAND)-based flood risk modeling system using a discrete global grid system, Geosci. Model Dev., 14, 3295–3315, https://doi.org/10.5194/gmd-14-3295-2021, 2021. a, b, c, d, e

Chicco,D.: Ten quick tips for machine learning in computational biology, Biodata Min., 10, 35, https://doi.org/10.1186/s13040-017-0155-3, 2017. a

Chlumsky,R., Craig,J., and Tolson,B.: Blackbird source code and supporting data sets for benchmarking study, Zenodo [code], https://doi.org/10.5281/zenodo.15042083, 2025. a, b

Chow,V.-T.: Open-channel Hydraulics, McGraw-Hill Civil Engineering Series, McGraw-Hill, New York, ISBN0070107769, 1959. a, b, c

Cian,F., Marconcini,M., and Ceccato,P.: Normalized difference flood index for rapid flood mapping: taking advantage of EO big data, Remote Sens. Environ., 209, 712–730, https://doi.org/10.1016/j.rse.2018.03.006, 2018. a

Diehl,R.M., Gourevitch,J.D., Drago,S., and Wemple,B.C.: Improving flood hazard datasets using a low-complexity, probabilistic floodplain mapping approach, PLoS One, 16, 1–20, https://doi.org/10.1371/journal.pone.0248683, 2021. a, b

Fohringer, J., Dransch, D., Kreibich, H., and Schröter, K.: Social media as an information source for rapid flood inundation mapping, Nat. Hazards Earth Syst. Sci., 15, 2725–2738, https://doi.org/10.5194/nhess-15-2725-2015, 2015. a

Follum,M.L.: AutoRoute Rapid Flood Inundation Model, Tech.rep., Coastal and Hydraulics Laboratory(US), Engineer Research and Development Center (US), https://hdl.handle.net/11681/1999 (last access: 25March2025), 2013.  a

Frame,J.M., Nair,T., Sunkara,V., Popien,P., Chakrabarti,S., Anderson,T., Leach,N.R., Doyle,C., Thomas,M., and Tellman,B.: Rapid inundation mapping using the U.S. national water model, satellite observations, and a convolutional neural network, Geophys. Res. Lett., 51, e2024GL109424, https://doi.org/10.1029/2024GL109424, 2024. a

Ghimire,E., Sharma,S., and Lamichhane,N.: Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system, ISH Journal of Hydraulic Engineering, 28, 110–126, 2022. a

Gilleland,E. and Katz,R.W.: extRemes 2.0: an extreme value analysis package in R, J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08, 2016. a

Hamidi,E., Peter,B.G., Muñoz,D.F., Moftakhari,H., and Moradkhani,H.: Fast flood extent monitoring with SAR change detection using Google Earth engine, IEEE T. Geosci. Remote, 61, 1–19, https://doi.org/10.1109/TGRS.2023.3240097, 2023. a

Hashim,S., SuhanaMokhtar,E., Ikhwan AbdulHalim,A., Mohd Naim WanMohd,W., AizamAdnan,N., and Pradhan,B.: Cross section intervals of flood intervals of flood inundation mapping at ungauged area, IOP Conference Series. Earth and Environmental Science, 620, 12003, https://doi.org/10.1088/1755-1315/620/1/012003, 2021. a

Henstra, D., Minano, A., and Thistlethwaite, J.: Communicating disaster risk? An evaluation of the availability and quality of flood maps, Nat. Hazards Earth Syst. Sci., 19, 313–323, https://doi.org/10.5194/nhess-19-313-2019, 2019. a

Heron Hydrologic: Blackbird, Heron Hydrologic [code], https://heronhydrologic.ca/blackbird/ (last access: 25March2025), 2025. a

Hulsing,H., Smith,W., and Cobb,E.D.: Velocity-Head Coefficients in Open Channels, Tech.rep., United States Geological Survey, https://doi.org/10.3133/wsp1869C, 1966. a

Hydrologic Engineering Center: HEC-RAS User's Manual version 6.4, https://www.hec.usace.army.mil/confluence/rasdocs/rasum/latest (last access: 25March2025), 2023. a

Jafarzadegan,K., Moradkhani,H., Pappenberger,F., Moftakhari,H., Bates,P., Abbaszadeh,P., Marsooli,R., Ferreira,C., Cloke,H.L., Ogden,F., and Duan,Q.: Recent advances and new frontiers in riverine and coastal flood modeling, Rev. Geophys., 61, e2022RG000788, https://doi.org/10.1029/2022RG000788, 2023. a, b, c

Kabir,S., Patidar,S., Xia,X., Liang,Q., Neal,J., and Pender,G.: A deep convolutional neural network model for rapid prediction of fluvial flood inundation, J. Hydrol., 590, 125481, https://doi.org/10.1016/j.jhydrol.2020.125481, 2020. a

Lhomme,J., Sayers,P., Gouldby,B., Samuels,P., Wills,M., and Mulet-Marti,J.: Recent development and application of a rapid flood spreading method, in: Flood Risk Management: Research and Practice, 1stEdn., CRC Press, UK, https://www.taylorfrancis.com/books/edit/10.1201/9780203883 (last access: 25March2025), 2009. a

Li,Z., Wang,C., Emrich,C.T., and Guo,D.: A novel approach to leveraging social media for rapid flood mapping: a case study of the 2015 South Carolina floods, Cartogr. Geogr. Inf. Sc., 45, 97–110, 2018. a

Li,Z., Duque,F.Q., Grout,T., Bates,B., and Demir,I.: Comparative analysis of performance and mechanisms of flood inundation map generation using height above nearest drainage, Environ. Model. Softw., 159, 105565, https://doi.org/10.1016/j.envsoft.2022.105565, 2023. a

Lin,L., Tang,C., Liang,Q., Wu,Z., Wang,X., and Zhao,S.: Rapid urban flood risk mapping for data-scarce environments using social sensing and region-stable deep neural network, J. Hydrol., 617, 128758, https://doi.org/10.1016/j.jhydrol.2022.128758, 2023. a

Lindsay,J.B.: The practice of DEM stream burning revisited, Earth Surf. Proc. Land., 41, 658–668, https://doi.org/10.1002/esp.3888, 2016. a

McGrath,H., Bourgon,J.-F., Proulx-Bourque,J.-S., Nastev,M., and Abo ElEzz,A.: A comparison of simplified conceptual models for rapid web-based flood inundation mapping, Nat. Hazards, 93, 905–920, 2018. a, b, c, d, e

MdAli,A., DiBaldassarre,G., and Solomatine,D.P.: Testing different cross-section spacing in 1D hydraulic modelling: a case study on Johor River, Malaysia, Hydrolog. Sci. J., 60, 351–360, 2015. a

Morvan,H., Knight,D., Wright,N., Tang,X., and Crossley,A.: The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models, J. Hydrol., 46, 191–208, https://doi.org/10.1080/00221686.2008.9521855, 2008. a

Najafi,H., Shrestha,P.K., Rakovec,O., Apel,H., Vorogushyn,S., Kumar,R., Thober,S., Merz,B., and Samaniego,L.: High-resolution impact-based early warning system for riverine flooding, Nat. Commun., 15, 3726–3726, 2024. a

Nobre,A., Cuartas,L., Hodnett,M., Rennó,C., Rodrigues,G., Silveira,A., Waterloo,M., and Saleska,S.: Height above the nearest drainage – a hydrologically relevant new terrain model, J. Hydrol., 404, 13–29, 2011. a

Rennó,C.D., Nobre,A.D., Cuartas,L.A., Soares,J.V., Hodnett,M.G., Tomasella,J., and Waterloo,M.J.: HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme rainforest environments in Amazonia, Remote Sens. Environ., 112, 3469–3481, https://doi.org/10.1016/j.rse.2008.03.018, 2008. a

Roussel,J.-R. and Auty,D.: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications, rpackage version4.1.1, CRAN [code], https://cran.r-project.org/package=lidR (last access: 25March2025), 2024. a

Roussel,J.-R., Auty,D., Coops,N.C., Tompalski,P., Goodbody,T.R., Meador,A.S., Bourdon,J.-F., de Boissieu,F., and Achim,A.: lidR: An R package for analysis of Airborne Laser Scanning (ALS) data, Remote Sens. Environ., 251, 112061, https://doi.org/10.1016/j.rse.2020.112061, 2020. a

Sampson,C.C., Smith,A.M., Bates,P.D., Neal,J.C., Alfieri,L., and Freer,J.E.: A high-resolution global flood hazard model, Water Resour. Res., 51, 7358–7381, 2015.  a

Scriven,B.W.G., McGrath,H., and Stefanakis,E.: GIS derived synthetic rating curves and HAND model to support on-the-fly flood mapping, Nat. Hazards, 109, 1629–1653, 2021. a, b, c, d, e

ShaeriKarimi,S., Saintilan,N., Wen,L., and Valavi,R.: Application of machine learning to model wetland inundation patterns across a large semiarid floodplain, Water Resour. Res., 55, 8765–8778, https://doi.org/10.1029/2019WR024884, 2019. a

Steinhausen,M., Paprotny,D., Dottori,F., Sairam,N., Mentaschi,L., Alfieri,L., Lüdtke,S., Kreibich,H., and Schröter,K.: Drivers of future fluvial flood risk change for residential buildings in Europe, Global Environ. Chang., 76, 102559, https://doi.org/10.1016/j.gloenvcha.2022.102559, 2022. a

Tavaresda Costa,R., Manfreda,S., Luzzi,V., Samela,C., Mazzoli,P., Castellarin,A., and Bagli,S.: A web application for hydrogeomorphic flood hazard mapping, Environ. Model. Softw., 118, 172–186, 2019. a

Teng,J., Vaze,J., Dutta,D., and Marvanek,S.: Rapid inundation modelling in large floodplains using LiDAR DEM, Water Resour. Manag., 29, 2619–2636, 2015. a

Thayer,J.B.: Downstream regime relations for single-thread channels, River. Res. Appl., 33, 182–186, https://doi.org/10.1002/rra.3053, 2017. a

Tripathy,P. and Malladi,T.: Global flood mapper: a novel Google Earth engine application for rapid flood mapping using Sentinel-1 SAR, Nat. Hazards, 114, 1341–1363, 2022. a

Wilkerson,G.V. and Parker,G.: Physical basis for quasi-universal relationships describing bankfull hydraulic geometry of sand-bed rivers, J. Hydrol., 137, 739–753, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000352, 2011. a

Yang,J., Townsend,R.D., and Daneshfar,B.: Applying the HEC-RAS model and GIS techniques in river network floodplain delineation, Can. J. Civil. Eng., 33, 19–28, 2006. a

Zheng,X., Maidment,D.R., Tarboton,D.G., Liu,Y.Y., and Passalacqua,P.: GeoFlood: large-scale flood inundation mapping based on high-resolution terrain analysis, Water Resour. Res., 54, 10,013–10,033, https://doi.org/10.1029/2018WR023457, 2018a. a, b

Zheng,X., Tarboton,D.G., Maidment,D.R., Liu,Y.Y., and Passalacqua,P.: River channel geometry and rating curve estimation using height above the nearest drainage, J. Am. Water Resour. As., 54, 785–806, 2018b. a, b, c

Zhou,Y., Wu,W., Nathan,R., and Wang,Q.J.: Deep learning-based rapid flood inundation modeling for flat floodplains with complex flow paths, Water Resour. Res., 58, e2022WR033214, https://doi.org/10.1029/2022WR033214, 2022. a

A reach-integrated hydraulic modelling approach  for large-scale and real-time inundation mapping (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Clemencia Bogisich Ret

Last Updated:

Views: 6117

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Clemencia Bogisich Ret

Birthday: 2001-07-17

Address: Suite 794 53887 Geri Spring, West Cristentown, KY 54855

Phone: +5934435460663

Job: Central Hospitality Director

Hobby: Yoga, Electronics, Rafting, Lockpicking, Inline skating, Puzzles, scrapbook

Introduction: My name is Clemencia Bogisich Ret, I am a super, outstanding, graceful, friendly, vast, comfortable, agreeable person who loves writing and wants to share my knowledge and understanding with you.